Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Clin Respir J ; 18(3): e13740, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38497229

RESUMO

Lambert-Eaton myasthenic syndrome (LEMS) is a rare paraneoplastic neurological syndrome of the neuromuscular transmission. The symptoms often progress slowly and can be misdiagnosed in early stage. Seropositive SOX-1 antibodies are support for the diagnosis of LEMS and have high specificity for small cell lung cancer (SCLC). In this paper, we report a case of a 56-year-old man with smoking history who was admitted to hospital with progressive muscle weakness of the proximal legs. LEMS was diagnosed by repetitive nerve stimulation (RNS) testing and seropositive SOX-1 antibodies. Primary screening with chest computed tomography (CT) and integrated PET/CT did not reveal any tumor. After continuous follow-up, SCLC was found by chest CT and confirmed with pathological examination 10 months after the diagnosis of LEMS. Long-term follow-up and screening for occult SCLC in LEMS patients with positive SOX-1 antibodies are very important.


Assuntos
Síndrome Miastênica de Lambert-Eaton , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Masculino , Humanos , Pessoa de Meia-Idade , Carcinoma de Pequenas Células do Pulmão/complicações , Carcinoma de Pequenas Células do Pulmão/diagnóstico , Neoplasias Pulmonares/complicações , Neoplasias Pulmonares/diagnóstico , Síndrome Miastênica de Lambert-Eaton/complicações , Síndrome Miastênica de Lambert-Eaton/diagnóstico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Autoanticorpos
2.
MAGMA ; 37(2): 185-198, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38386153

RESUMO

OBJECTIVE: Conventional single-target field control for matrix gradient coils will add control complexity in MRI spatial encoding, such as designing specialized fields and sequences. This complexity can be reduced by multi-target field control, which is realized by optimizing the coil structure according to target fields. METHODS: Based on the principle of multi-target field control, the X, Y and Z gradient fields can be set as target fields, and all coil elements can then be divided into three groups to generate these fields. An improved simulated annealing algorithm is proposed to optimize the coil element distribution of each group to generate the corresponding target field. In the improved simulated annealing process, two swapping modes are presented, and randomly selected with certain probabilities that are set to 0.25, 0.5 and 0.75, respectively. The flexibility of the final designed structure is demonstrated by a spherical harmonic basis up to the full second order with single-target field control. An experimental platform is built to measure the gradient fields generated by the designed structure with multi-target target control. RESULTS: With three probabilities of swapping modes, three similar coil element distributions are optimized, and their maximum magnetic field errors for generating X, Y and Z gradients are all below 5%. The structure selected for the final design is the one with a probability of 0.75, considering the coil performance and structural symmetry. The maximum error for all target fields generated by single-target field control is also below 5%. The experimental results show that the measured gradient fields along the axes have enough strength and high linearity. CONCLUSIONS: With the proposed improved simulated annealing algorithm and swapping modes, multi-target field control for matrix gradient coils is verified and achieved in this study by optimizing the coil element distribution. Moreover, this study provides a solution to simplify the complexity of controlling the matrix gradient coil in spatial encoding.


Assuntos
Campos Magnéticos , Imageamento por Ressonância Magnética , Desenho de Equipamento , Imageamento por Ressonância Magnética/métodos , Algoritmos
3.
Lupus ; 33(5): 439-449, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38334360

RESUMO

OBJECTIVE: This study aimed to investigate the possible role of granulin (GRN) in activating the TLR9-IFN-α pathway in renal tubular epithelial cells (RTECs) and explore clues that RTECs regulate the micro-environment of inflammatory response in lupus nephritis (LN). METHODS: Renal sections from 57 LN patients and 30 non-LN patients were sampled for histological study, and GRN overexpression RTECs were applied for cytological study. RESULTS: In the histological study, GRN is highly expressed in LN RTECs with tubulointerstitial inflammation (TII) and well co-localized with TLR9. ROC analysis suggested a potential relationship between GRN expression in RTECs and therapeutic response. Moreover, IFN-α also highly expressed in LN RTECs with TII, and the intensity of IFN-α is positively correlated with the co-localization intensity of GRN and TLR9. In the cytological study, LN serum, especially serum from LN with TII, activates the expression of TLR9 in RTECs, and GRN engages the interaction of TLR9 to activate the expression of IFN-α in RTECs. While TLR9 inhibitors can suppress the expression of IFN-α in RTECs, the degree of inhibition is dose-dependent. CONCLUSION: The expression of GRN in RTECs is associated with interstitial inflammation and therapeutic response. GRN may mediate the activation of the TLR9-IFN-α pathway in RTECs and involve in the micro-environment of inflammatory response in LN.


Assuntos
Granulinas , Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Humanos , Granulinas/metabolismo , Inflamação/metabolismo , Interferon-alfa/metabolismo , Rim/patologia , Lúpus Eritematoso Sistêmico/patologia , Nefrite Lúpica/patologia , Receptor Toll-Like 9/metabolismo
4.
Science ; 383(6684): 771-777, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38359121

RESUMO

Graphene and two-dimensional transition metal carbides and/or nitrides (MXenes) are important materials for making flexible energy storage devices because of their electrical and mechanical properties. It remains a challenge to assemble nanoplatelets of these materials at room temperature into in-plane isotropic, free-standing sheets. Using nanoconfined water-induced basal-plane alignment and covalent and π-π interplatelet bridging, we fabricated Ti3C2Tx MXene-bridged graphene sheets at room temperature with isotropic in-plane tensile strength of 1.87 gigapascals and moduli of 98.7 gigapascals. The in-plane room temperature electrical conductivity reached 1423 siemens per centimeter, and volumetric specific capacity reached 828 coulombs per cubic centimeter. This nanoconfined water-induced alignment likely provides an important approach for making other aligned macroscopic assemblies of two-dimensional nanoplatelets.

5.
Adv Mater ; : e2312209, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38262622

RESUMO

Harvesting electricity from widespread water evaporation provides an alternative route to cleaner power generation technology. However, current evaporation power generation (EPG) mainly depends on the dissociation process of certain functional groups (e.g., SO3 H) in water, which suffers from low power density and short-term output. Herein, the Janus membrane is prepared by combining nanofluid and water-grabbing material for EPG, where the nanoconfined ionic liquids (NCILs) serve as ion sources instead of the functional groups. Benefiting from the selective and fast transport of anions in NCILs, such EPG demonstrates excellent power performance with a voltage of 0.63 V, a short-circuit current of 140 µA, and a maximum power density of 16.55 µW cm-2 while operating for at least 180 h consistently. Molecular dynamics (MD) simulation and surface potential analysis reveal the molecular mechanism, that is, the diffusion of Cl- anions during evaporation is much faster than that of cations, generating the voltage and current across the membrane. Furthermore, the device performs well in varying environmental conditions, including different water temperatures and sources of evaporating water, showcasing its adaptability and integrability. Overall, the nanofluid-guided Janus membrane can efficiently transform low-grade thermal energy in evaporation into electricity, showing a competitive advantage over other sustainable applied approaches.

6.
Metab Syndr Relat Disord ; 22(3): 161-169, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38294776

RESUMO

Evidence-based medicine shows that obesity is associated with a wide range of cardiovascular (CV) diseases. Obesity can lead to changes in cardiac structure and function, which can lead to obese cardiomyopathy, subclinical cardiac dysfunction, and even heart failure. It also increases the risk of atrial fibrillation and sudden cardiac death. Many invasive and noninvasive diagnostic methods can detect obesity-related heart disease at an early stage, so that appropriate measures can be selected to prevent adverse CV events. However, studies have shown a protective effect of obesity on clinical outcomes of CV disease, a phenomenon that has been termed the obesity paradox. The "obesity paradox" essentially refers to the fact that the classification of obesity defined by body mass index (BMI) does not consider the impact of obesity heterogeneity on CV disease prognosis, but simply puts subjects with different clinical and biochemical characteristics into the same category. In any case, indicators such as waist-to-hip ratio, ectopic body fat qualitative and quantitative, and CV fitness have been shown to be able to distinguish different CV risks in patients with the same BMI, which is convenient for early intervention in an appropriate way. A multidisciplinary approach, including lifestyle modification, evidence-based generic and novel pharmacotherapy, and surgical intervention, can improve CV outcomes in overweight/obese patients.


Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , Humanos , Obesidade/complicações , Obesidade/diagnóstico , Obesidade/terapia , Doenças Cardiovasculares/complicações , Doenças Cardiovasculares/diagnóstico , Prognóstico , Sobrepeso/complicações , Índice de Massa Corporal , Fatores de Risco
7.
J Cardiovasc Med (Hagerstown) ; 25(2): 132-140, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37994616

RESUMO

OBJECTIVES: Left atrial reverse remodelling (LARR) reflects an improvement in the function or structure. However, it is unclear whether the presence of LARR is associated with better outcomes in patients with heart failure with preserved ejection fraction (HFpEF). METHODS: The study was a monocentric retrospective cohort one. Consecutive HFpEF patients admitted to the hospital between 1 January 2018 and 30 June 2020 were included. This cohort was divided into LARR and non-LARR groups based on the recovery of the left atrium. The primary endpoints were all-cause mortality, rehospitalization for heart failure, and the composite of death or readmission. Significant predictors of LARR were examined. RESULTS: A total of 409 patients were enrolled, including 90 cases in the LARR group and 319 in the non-LARR group. Kaplan-Meier analysis showed that compared with the non-LARR group, the LARR group had a lower incidence of rehospitalization for heart failure and the composite of death or readmission but not all-cause mortality. Similar results were observed in a subgroup analysis of patients with and without atrial fibrillation. Cox regression analysis demonstrated that the non-LARR group experienced higher risks of heart failure-related readmission [hazard ratio: 1.785, 95% confidence interval (CI) 1.236-3.215, P  = 0.037] and the composite outcome (hazard ratio: 1.684, 95% CI 1.254-2.865, P  = 0.044), but not all-cause mortality (hazard ratio: 1.475, 95% CI: 0.481-3.527, P  = 0.577) compared with the LARR group after adjusting for significant confounders. Logistic regression analysis showed that mild mitral regurgitation and the use of loop diuretics were two positive predictors of LARR in patients with HFpEF. CONCLUSION: LARR is an effective echocardiographic index that can be used to predict heart failure-related readmission in HFpEF. Therefore, regular assessment of left atrial size can provide a useful marker for risk stratification of heart failure.


Assuntos
Insuficiência Cardíaca , Humanos , Prognóstico , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/terapia , Volume Sistólico , Estudos Retrospectivos , Hospitalização , Função Ventricular Esquerda
8.
Thyroid Res ; 16(1): 42, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848968

RESUMO

BACKGROUND: The zinc-finger CCHC-type (ZCCHC) superfamily proteins are characterized by the shared sequence CX2-CX4-HX4-C and thought to own high affinity to single-stranded nucleic acids, particularly RNAs. In humans, a total of 24 ZCCHC proteins have been annotated in the HUGO Gene Nomenclature Committee (HGNC, https://www.genenames.org/ ) database with most of these members involved in multiple steps of RNA metabolism. Many studies have indicated that the ZCCHC genes play a regulatory role in the development and progression of solid tumors. To date, the expression pattern and prognostic value of ZCCHC factors in thyroid carcinomas have not been reported. METHODS: Bioinformatics analyses on the functions of ZCCHC factors in thyroid carcinoma (THCA) patients were performed based on various databases, i.e., TCGA, GEPIA, Kaplan-Meier Plotter, and TIMER. RESULTS: Compared with normal tissues, the expression of ZCCHC12 mRNA was significantly increased in THCA tissues. And it was associated with the overall survival of THCA patients, based on the Kaplan-Meier Plotter database. Furthermore, the expression levels of all ZCCHCs were correlated with tumor stages, implying its high relevance to THCA, specifically its immunity. CONCLUSION: The ZCCHC genes, represented by ZCCHC12, are differentially expressed in THCA staging. These genes are associated with immune infiltration of THCA and identified as the potential therapeutic targets for immunotherapy in THCA patients, which are possible novel biomarkers for the treatment of THCA.

9.
J Phys Chem Lett ; 14(40): 9103-9111, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37792476

RESUMO

Ionic liquids (ILs) exhibit fascinating properties due to special Z-bonds and have been widely used in electrochemical systems. The local Z-bond networks potentially cause a discrepancy in electrochemical properties. Understanding the correlations between the Z-bond energy (EZ-bond) and the electrochemical properties is helpful to identify appropriate ILs. It is difficult to estimate the correlations from single density functional theory calculations or molecular dynamic simulations. In this work, a machine learning model targeting the electronic density (ρBCP) of Z-bonds has been trained successfully, as expected for use in systems above the nanoscale size. The connection between the EZ-bond and the electrochemical potential window in ILs@TiO2, as well as that between the EZ-bond and the charge carrier mobility in ILs-PEDOT:Tos@SiO2, was separately investigated. This study highlights an efficient model for predicting ρBCP in nanoscale systems and anticipates exploring the connection between Z-bonds and the electrochemical properties of IL-based systems.

10.
Angew Chem Int Ed Engl ; 62(42): e202310168, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37656770

RESUMO

Conversion-type batteries apply the principle that more charge transfer is preferable. The underutilized electron transfer mode within two undermines the electrochemical performance of halogen batteries. Here, we realised a three-electron transfer lithium-halogen battery based on I- /I+ and Cl- /Cl0 couples by using a common commercial electrolyte saturated with Cl- anions. The resulting Li||tetrabutylammonium triiodide (TBAI3 ) cell exhibits three distinct discharging plateaus at 2.97, 3.40, and 3.85 V. Moreover, it has a high capacity of 631 mAh g-1 I (265 mAh g-1 electrode , based on entire mass loading) and record-high energy density of up to 2013 Wh kg-1 I (845 Wh kg-1 electrode ). To support these findings, experimental characterisations and density functional theory calculations were conducted to elucidate the redox chemistry involved in this novel interhalogen strategy. We believe our paradigm presented here has a foreseeable inspiring effect on other halogen batteries for high-energy-density pursuit.

11.
Proc Natl Acad Sci U S A ; 120(38): e2303466120, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37695920

RESUMO

Low-grade wind with airspeed Vwind < 5 m/s, while distributed far more abundantly, is still challenging to extract because current turbine-based technologies require particular geography (e.g., wide-open land or off-shore regions) with year-round Vwind > 5 m/s to effectively rotate the blades. Here, we report that low-speed airflow can sensitively enable directional flow within nanowire-anchored ionic liquid (IL) drops. Specifically, wind-induced air/liquid friction continuously raises directional leeward fluid transport in the upper portion, whereas three-phase contact line (TCL) pinning blocks further movement of IL. To remove excessive accumulation of IL near TCL, fluid dives, and headwind flow forms in the lower portion, as confirmed by microscope observation. Such stratified circulating flow within single drop can generate voltage output up to ~0.84 V, which we further scale up to ~60 V using drop "wind farms". Our results demonstrate a technology to tap the widespread low-grade wind as a reliable energy resource.

12.
BMC Genom Data ; 24(1): 42, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558997

RESUMO

BACKGROUND: The chloroplast genome of plants is known for its small size and low mutation and recombination rates, making it a valuable tool in plant phylogeny, molecular evolution, and population genetics studies. Codon usage bias, an important evolutionary feature, provides insights into species evolution, gene function, and the expression of exogenous genes. Coffee, a key crop in the global tropical agricultural economy, trade, and daily life, warrants investigation into its codon usage bias to guide future research, including the selection of efficient heterologous expression systems for coffee genetic transformation. RESULTS: Analysis of the codon utilization patterns in the chloroplast genomes of three Coffea species revealed a high degree of similarity among them. All three species exhibited similar base compositions, with high A/T content and low G/C content and a preference for A/T-ending codons. Among the 30 high-frequency codons identified, 96.67% had A/T endings. Fourteen codons were identified as ideal. Multiple mechanisms, including natural selection, were found to influence the codon usage patterns in the three coffee species, as indicated by ENc-GC3s mapping, PR2 analysis, and neutral analysis. Nicotiana tabacum and Saccharomyces cerevisiae have potential value as the heterologous expression host for three species of coffee genes. CONCLUSION: This study highlights the remarkable similarity in codon usage patterns among the three coffee genomes, primarily driven by natural selection. Understanding the gene expression characteristics of coffee and elucidating the laws governing its genetic evolution are facilitated by investigating the codon preferences in these species. The findings can enhance the efficacy of exogenous gene expression and serve as a basis for future studies on coffee evolution.


Assuntos
Coffea , Genoma de Cloroplastos , Magnoliopsida , Coffea/genética , Café , Códon/genética , Uso do Códon , Magnoliopsida/genética
13.
J Funct Biomater ; 14(7)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37504877

RESUMO

Polyethylene glycol (PEG)-doxorubicin (DOX) conjugation is an important strategy to improve toxicity and enhance clinically therapeutic efficacy. However, with the frequent use of PEG-modified drugs, the accumulation of anti-PEG antibodies has become a tough issue, which limits the application of PEG-drug conjugation. As an alternative solution, poly(2-oxazoline) (POX)-DOX conjugation has shown great potential in the anti-tumor field, but the reported conjugation process of POX with DOX has drawbacks such as complex synthetic steps and purification. Herein, we propose a convenient and controllable strategy for the synthesis of POX-DOX conjugation with different chain lengths and narrow dispersity by N-boc-2-bromoacetohydrazide-initiated 2-ethyl-oxazoline polymerization and the subsequent deprotection of the N-Boc group and direct reaction with DOX. The DOX-PEtOx conjugates were firstly purified, and the successful conjugations were confirmed through various characterization methods. The synthetic DOX-PEtOxn conjugates reduce the toxicity of DOX and increase the selectivity to tumor cells, reflecting the promising application of this POX-DOX conjugation strategy in drug modification and development.

14.
Adv Healthc Mater ; 12(22): e2300068, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37269485

RESUMO

Biodegradable polymer as traditional material has been widely used in the medical and tissue engineering fields, but there is a great limitation as to its inferior mechanical performance for repairing load-bearing tissues. Thus, it is highly desirable to develop a novel technology to fabricate high-performance biodegradable polymers. Herein, inspired by the bone's superstructure, a versatile disorder-to-order technology (VDOT) is proposed to manufacture a high-strength and high-elastic modulus stereo-composite self-reinforced polymer fiber. The mean tensile strength (336.1 MPa) and elastic modulus (4.1 GPa) of the self-reinforced polylactic acid (PLA) fiber are 5.2 and 2.1 times their counterparts of the traditional PLA fiber prepared by the existing spinning method. Moreover, the polymer fibers have the best ability of strength retention during degradation. Interestingly, the fiber tensile strength is even higher than those of bone (200 MPa) and some medical metals (e.g., Al and Mg). Based on all-polymeric raw materials, the VDOT endows bioinspired polymers with improved strength, elastic modulus, and degradation-controlled mechanical maintenance, making it a versatile update technology for the massive industrial production of high-performance biomedical polymers.


Assuntos
Materiais Biomiméticos , Polímeros , Polímeros/química , Teste de Materiais , Poliésteres , Resistência à Tração
15.
MAGMA ; 36(3): 409-418, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37081246

RESUMO

OBJECTIVE: To design a lightweight permanent magnet for a lowfield movable head imaging MRI system. MATERIALS AND METHODS: To reduce the weight of the magnet, the pole pieces, anti-eddy current plates, and shimming rings were removed, and the distance between the two vertical yokes was shortened as much as possible. To compensate for the magnetic field deformation caused by the shortened distance between two vertical iron yokes, two side magnetic poles were added to the vertical yokes. The magnetic field distributions in magnetic poles, the iron yoke, and the spherical imaging region were simulated. Phantom and in vivo head imaging were conducted with a lowfield movable MRI prototype scanner equipped with the proposed permanent magnet. RESULTS: A permanent magnet with a center field of 0.19815 T, a homogeneity of 46 ppm over the 20 cm spherical imaging region, and a weight of 654 kg have been achieved. Acceptable images of a phantom and a human brain have been acquired with the prototype MRI scanner. DISCUSSION: The proposed permanent magnet design significantly reduces the magnet's weight compared with the conventional magnet structure and shows promise in promoting the development of lowfield compact MRI systems.


Assuntos
Imageamento por Ressonância Magnética , Imãs , Humanos , Imageamento por Ressonância Magnética/métodos , Campos Magnéticos , Magnetismo , Ferro
16.
Angew Chem Int Ed Engl ; 62(17): e202218472, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-36854948

RESUMO

High-purity H2 production accompanied with a precise decarbonization opens an avenue to approach a carbon-neutral society. Metal-organic framework nanosheet membranes provide great opportunities for an accurate and fast H2 /CO2 separation, CO2 leakage through the membrane interlayer galleries decided the ultimate separation accuracy. Here we introduce low dose amino side groups into the Zn2 (benzimidazolate)4 conformation. Physisorbed CO2 served as interlayer linkers, gently regulated and stabilized the interlayer spacing. These evoked a synergistic effect of CO2 adsorption-assisted molecular sieving and steric hinderance, whilst exquisitely preserving apertures for high-speed H2 transport. The optimized amino membranes set a new record for ultrathin nanosheet membranes in H2 /CO2 separation (mixture separation factor: 1158, H2 permeance: 1417 gas permeation unit). This strategy provides an effective way to customize ultrathin nanosheet membranes with desirable molecular sieving ability.

17.
Food Res Int ; 165: 112470, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869483

RESUMO

Green coffee oil (GCO) extracted from green coffee beans, is known for its antioxidant and anticancer properties, and has been increasingly utilised in cosmetic and other consumer products. However, lipid oxidation of GCO fatty acid components during storage may be harmful to human health, and there remains a need to understand the evolution of GCO chemical component oxidation. In this study, proton nuclear magnetic resonance (1H and 13C NMR) spectroscopy was used to investigate the oxidation status of solvent-extracted and cold-pressed GCO under accelerated storage conditions. Results show that the signal intensity of oxidation products gradually increased with increasing oxidation time, while unsaturated fatty acid signals gradually weakened. Five different types of GCO extracts were clustered according to their properties, except for minor overlapping in the two-dimensional plane of the principal component analysis. Partial least squares-least analysis results demonstrate that oxidation products (δ = 7.8-10.3 ppm), unsaturated fatty acids (δ = 5.28-5.42 ppm), and linoleic acid (δ = 2.70-2.85 ppm) in 1H NMR can be used as characteristic indicators of GCO oxidation levels. Furthermore, the kinetics curves of unsaturated fatty acids, linoleic, and linolenic acyl groups all fit an exponential equation with high coefficients of GCO for 36 days under accelerated storage conditions. Our results show that the current NMR system is a fast, easy-operated and convenient tool for the oxidation process monitoring and quality control of GCO.


Assuntos
Antioxidantes , Imageamento por Ressonância Magnética , Humanos , Espectroscopia de Prótons por Ressonância Magnética , Oxirredução , Solventes
18.
J Phys Chem Lett ; 14(11): 2708-2714, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36892821

RESUMO

Molecular dynamic simulations of aqueous mixtures of imidazolium ionic liquids (ILs) were performed to elucidate the dependence of the ionic diffusivity on the microscopic structures changed by water. Two distinct regimes of the average ionic diffusivity (Dave) were identified with the increased water concentrations: the jam regime with slowly increased Dave and the exponential regime with rapidly increased Dave, which are found to be directly correlated to the ionic association. Further analysis leads to two general relationships independent of IL species between Dave and the degree of ionic association: (i) a consistent linear relationship between Dave and the inverse of ion-pair lifetimes (1/τIP) in the two regimes and (ii) an exponential relationship between normalized diffusivities (D̃ave) and short-ranged interactions between cations and anions (Eions), with different interdependent strengths in the two regimes. These findings revealed and quantified the direct correlation between dynamic properties and ionic association in IL-water mixtures.

19.
Biosens Bioelectron ; 225: 115079, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36738731

RESUMO

It is a significant challenge to perform painless invasive detection of inflammation progression in relation to the evolution of pH, redox potential, and reactive oxygen species (ROS) levels in an in situ and real-time manner. In this work, polydopamine-modified, silver nanoparticle-decorated poly (methyl methacrylate) microneedles (AgNPs@PDA@MNs) have been developed as a multiplexed surface enhanced Raman scattering (SERS) diagnostic platform. Using rhodamine 6G as the Raman signal molecule, the AgNPs@PDA@MNs demonstrated a significant enhancement with reasonable linearity in the range of 10-3-10-9 mol/L and the limit of detection is 1.0 × 10-10 mol/L 4-mercaptobenzoic acid, anthraquinone-2-carboxylic acid and para-aminothiophenol were covalently anchored on AgNPs@PDA@MNs SERS substrate. I1143/I1183, I1606/I1667 and I1143/I1077 were used as assay standards for pH, redox potential and ROS level detection, respectively. The SERS multiplexed transparent microneedles (SERS mtMNs) linearly responded to pH in the range of 4.0-8.0, redox potential in the range of 417.0-599.8 mV, and ROS levels in the range of 0-480 ng/mL, demonstrating a significant ability to detect complex inflammation in vivo, in situ and in real-time.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Nanopartículas Metálicas/química , Espécies Reativas de Oxigênio , Prata/química , Análise Espectral Raman
20.
BMC Genom Data ; 24(1): 12, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849914

RESUMO

BACKGROUND: The peaberry bean in Arabica coffee has exceptional quality compared to the regular coffee bean. Understanding the molecular mechanism of bean quality is imperative to introduce superior coffee quality traits. Despite high economic importance, the regulatory aspects of bean quality are yet largely unknown in peaberry. A transcriptome analysis was performed by using peaberry and regular coffee beans in this study. RESULTS: The result of phenotypic analysis stated a difference in the physical attributes of both coffee beans. In addition, transcriptome analysis revealed low genetic differences. Only 139 differentially expressed genes were detected in which 54 genes exhibited up-regulation and 85 showed down-regulations in peaberry beans compared to regular beans. The majority of differentially expressed genes had functional annotation with cell wall modification, lipid binding, protein binding, oxidoreductase activity, and transmembrane transportation. Many fold lower expression of Ca25840-PMEs1, Ca30827-PMEs2, Ca30828-PMEs3, Ca25839-PMEs4, Ca36469-PGs. and Ca03656-Csl genes annotated with cell wall modification might play a critical role to develop different bean shape patterns in Arabica. The ERECTA family genes Ca15802-ERL1, Ca99619-ERL2, Ca07439-ERL3, Ca97226-ERL4, Ca89747-ERL5, Ca07056-ERL6, Ca01141-ERL7, and Ca32419-ERL8 along lipid metabolic pathway genes Ca06708-ACOX1, Ca29177-ACOX2, Ca01563-ACOX3, Ca34321-CPFA1, and Ca36201-CPFA2 are predicted to regulate different shaped bean development. In addition, flavonoid biosynthesis correlated genes Ca03809-F3H, Ca95013-CYP75A1, and Ca42029-CYP75A2 probably help to generate rarely formed peaberry beans. CONCLUSION: Our results provide molecular insights into the formation of peaberry. The data resources will be important to identify candidate genes correlated with the different bean shape patterns in Arabica.


Assuntos
Coffea , Perfilação da Expressão Gênica , Transcriptoma/genética , Coffea/genética , Regulação para Baixo , Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...